Exercise 3.5.2

(a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x^{2}.
(b) From part (a), determine the Fourier sine series of x^{3}.

Solution

Part (a)
Equation (3.3.11) in the text is the Fourier sine series expansion of x (defined on $0 \leq x \leq L$)

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}, \tag{3.3.11}
\end{equation*}
$$

and equation (3.3.12) in the text is the formula for the coefficients.

$$
\begin{equation*}
B_{n}=\frac{2}{L} \int_{0}^{L} x \sin \frac{n \pi x}{L} d x=-\frac{2(-1)^{n} L}{n \pi} \tag{3.3.12}
\end{equation*}
$$

Substitute this formula for the coefficients into the expansion.

$$
x=\sum_{n=1}^{\infty}\left[-\frac{2(-1)^{n} L}{n \pi}\right] \sin \frac{n \pi x}{L}
$$

Integrate both sides with respect to x.

$$
\begin{aligned}
\frac{x^{2}}{2} & =\int \sum_{n=1}^{\infty}\left[-\frac{2(-1)^{n} L}{n \pi}\right] \sin \frac{n \pi x}{L} d x+C \\
& =\sum_{n=1}^{\infty}\left[-\frac{2(-1)^{n} L}{n \pi}\right] \int \sin \frac{n \pi x}{L} d x+C \\
& =\sum_{n=1}^{\infty}\left[-\frac{2(-1)^{n} L}{n \pi}\right]\left(-\frac{L}{n \pi}\right) \cos \frac{n \pi x}{L}+C \\
& =\sum_{n=1}^{\infty} \frac{2(-1)^{n} L^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{L}+C
\end{aligned}
$$

In order to obtain C, integrate both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{x^{2}}{2} d x & =\int_{0}^{L}\left[\sum_{n=1}^{\infty} \frac{2(-1)^{n} L^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{L}+C\right] d x \\
\frac{L^{3}}{6} & =\sum_{n=1}^{\infty} \frac{2(-1)^{n} L^{2}}{n^{2} \pi^{2}} \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0}+C \int_{0}^{L} d x \\
& =C L
\end{aligned}
$$

Solve for C.

$$
C=\frac{L^{2}}{6}
$$

Substitute this into the formula for $x^{2} / 2$.

$$
\frac{x^{2}}{2}=\sum_{n=1}^{\infty} \frac{2(-1)^{n} L^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{L}+\frac{L^{2}}{6}
$$

Multiply both sides by 2 .

$$
x^{2}=\sum_{n=1}^{\infty} \frac{4(-1)^{n} L^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{L}+\frac{L^{2}}{3}
$$

Divide both sides by L^{2}.

$$
\left(\frac{x}{L}\right)^{2}=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{L}+\frac{1}{3}
$$

Below is a graph of the right side versus x / L. Note that the right side is defined on the whole line $(-\infty<x<\infty)$ while the left side is defined only on $0 \leq x \leq L$.

Part (b)

Start with the Fourier cosine series of x^{2} in part (a).

$$
x^{2}=\sum_{n=1}^{\infty} \frac{4(-1)^{n} L^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{L}+\frac{L^{2}}{3}
$$

Integrate both sides with respect to x.

$$
\begin{aligned}
\frac{x^{3}}{3} & =\int\left[\sum_{n=1}^{\infty} \frac{4(-1)^{n} L^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{L}+\frac{L^{2}}{3}\right] d x+D \\
& =\sum_{n=1}^{\infty} \frac{4(-1)^{n} L^{2}}{n^{2} \pi^{2}} \int \cos \frac{n \pi x}{L} d x+\frac{L^{2}}{3} \int d x+D \\
& =\sum_{n=1}^{\infty} \frac{4(-1)^{n} L^{2}}{n^{2} \pi^{2}}\left(\frac{L}{n \pi}\right) \sin \frac{n \pi x}{L}+\frac{L^{2}}{3} x+D
\end{aligned}
$$

This equation holds for every value of x, so set $x=0$ to determine D.

$$
0=D
$$

Continue simplifying the formula for $x^{3} / 3$.

$$
\begin{aligned}
\frac{x^{3}}{3} & =\sum_{n=1}^{\infty} \frac{4(-1)^{n} L^{2}}{n^{2} \pi^{2}}\left(\frac{L}{n \pi}\right) \sin \frac{n \pi x}{L}+\frac{L^{2}}{3} x \\
& =\sum_{n=1}^{\infty} \frac{4(-1)^{n} L^{3}}{n^{3} \pi^{3}} \sin \frac{n \pi x}{L}+\frac{L^{2}}{3} \sum_{n=1}^{\infty}\left[-\frac{2(-1)^{n} L}{n \pi}\right] \sin \frac{n \pi x}{L} \\
& =\sum_{n=1}^{\infty} \frac{4(-1)^{n} L^{3}}{n^{3} \pi^{3}} \sin \frac{n \pi x}{L}-\sum_{n=1}^{\infty} \frac{2(-1)^{n} L^{3}}{3 n \pi} \sin \frac{n \pi x}{L} \\
& =\sum_{n=1}^{\infty}\left[\frac{4(-1)^{n} L^{3}}{n^{3} \pi^{3}}-\frac{2(-1)^{n} L^{3}}{3 n \pi}\right] \sin \frac{n \pi x}{L} \\
& =\sum_{n=1}^{\infty}\left(\frac{4 L^{3}}{n^{3} \pi^{3}}-\frac{2 L^{3}}{3 n \pi}\right)(-1)^{n} \sin \frac{n \pi x}{L}
\end{aligned}
$$

Multiply both sides by 3 .

$$
x^{3}=\sum_{n=1}^{\infty}\left(\frac{12 L^{3}}{n^{3} \pi^{3}}-\frac{2 L^{3}}{n \pi}\right)(-1)^{n} \sin \frac{n \pi x}{L}
$$

Divide both sides by L^{3}.

$$
\left(\frac{x}{L}\right)^{3}=\sum_{n=1}^{\infty}\left(\frac{12}{n^{3} \pi^{3}}-\frac{2}{n \pi}\right)(-1)^{n} \sin \frac{n \pi x}{L}
$$

Below is a graph of the right side versus x / L. Note that the right side is defined on the whole line $(-\infty<x<\infty)$ while the left side is defined only on $0 \leq x \leq L$.

